Search results

Search for "porous carbon" in Full Text gives 41 result(s) in Beilstein Journal of Nanotechnology.

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • are well dispersed in the porous carbon matrix, while they seem to be aggregated on the carbon surface in Ge/C-HT180 or unevenly distributed in Ge/C-SS750. Electrochemical characterization The electrochemical behavior during lithiation/delithiation of Ge and Ge@C electrodes was investigated using CV
PDF
Album
Full Research Paper
Published 26 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • ]. Furthermore, the introduction of immobilized ZnO particles on the carbon surface may result in the formation of capacitor-like structures at the heterogeneous interface between carbon and ZnO (Figure 7a) [31]. Also, the heterogeneous interface among the SiCnw core, the porous carbon shell, and the ZnO
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • thanks to a specially designed electromechanical system that mixed the carbon support particles during platinum deposition. In the studies, Vulcan XC-72R carbon black powder, a popular material used as support in the anodes and cathodes of PEMFCs, and a porous carbon material with a high degree of
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • ; W. Guo), Copyright 2014 Springer Nature. This content is not subject to CC BY 4.0. (a) SEM image of the porous carbon film. (b) The porous carbon film power generation device and its performance are depicted schematically. Figure 3a, 3b, and 3f were reproduced from [9], Ding, Tianpeng et al., “All
  • -Printed Porous Carbon Film for Electricity Generation from Evaporation-Driven Water Flow”, Adv. Funct. Mater., with permission from John Wiley and Sons. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This content is not subject to CC BY 4.0. (c) HR-TEM image of CB and a schematic depiction
  • of water evaporation and induced water flow in CB. (d) After annealing and air plasma cleaning, changes in hydrophilicity and functional groups of the porous carbon film. (e) Voltage between the two electrodes at different wind velocities. Figure 3c, 3d, and 3e are from [46] and were reprinted by
PDF
Album
Review
Published 25 Oct 2022

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • [4]. Since carbon structures are highly diverse, a huge variety of cathode materials have been designed and tested in RT Na–S batteries. Here, the sulfur–carbon composites are classified in two main categories: (1) sulfur–porous carbon composites and (2) covalently bound sulfur–carbon composites
  • . Sulfur–porous carbon composites Hollow and porous carbon structures may not only increase cathode conductivity, but can also allow for physical confinement of long-chain sodium polysulfides and reduce the structural damage caused by sulfur volume expansion [4][11]. This makes sulfur–porous carbon
  • significantly improves the cycling stability since the shuttle effect is minimized. For instance, a capacity of 300 mAh·g−1 after 1500 cycles at 1C and a Coulombic efficiency of 98% can be achieved (Figure 3A) [29]. Furthermore, hierarchical porous carbon structures have also shown promising performance as
PDF
Album
Review
Published 09 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • application. For example, Gutiérrez et al. synthesized porous carbon using p-toluenesulfonic acid and choline chloride in a molar ratio of 1:1 [88]. The DES used served as solvent and catalyst for the condensation of furfuryl alcohol, followed by carbonization resulting in the formation of pores. Oh et al
PDF
Album
Review
Published 18 Aug 2021

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • ) micrograph in Figure 2a. Pt-NPs (black dots) are homogeneously distributed across the entire porous carbon sheet (grey areas). The porosity of the support can be observed in the dark-field TEM micrograph (Figure 2b) and has been reported to be beneficial in electrocatalysis, as it reduces mass transport
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • specific surface area. The increase in the specific surface area of the electrode due to increased porosity facilitates ion transportation, which increases the conductivity of monolithic electrodes [24][25][26]. Although the porous carbon nanofibers have a high specific surface area, their low electrical
  • electrode electrospinning method (MPEM). It was found that the alignment of the composite nanofibers (CNFs) improved their electrical conductivity. Therefore, this study provided a convenient and straightforward approach to synthesize ordered porous carbon/graphene CNFs (CGCNFs) with a high number of
PDF
Album
Full Research Paper
Published 27 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • hydrothermal treatment and carbonization time under argon flow) are listed in Table 2. Preparation of carbons from resorcinol-formaldehyde gels Porous carbon monoliths were obtained by carbonization of resorcinol–formaldehyde (RF) gels obtained via a sol–gel process as previously reported [28][29]. In short
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • formation of pyridinic N and graphitic or quaternary N have been demonstrated to improve the activity of N-modified carbon-based materials such as N-doped ordered porous carbon and N-doped carbon nanotubes [49][50]. According to our evaluation of the XPS data, 8 atom % N is involved in bonding to Ni for Ni
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • because of functional carbon materials (graphene [16] or porous carbon [17]), mesoporous materials [18] and MOFs [19][20][21][22]. For example, MOFs [23][24][25], carbonaceous materials (such as carbon nanotubes, graphene, biochar and activated carbon) [26] and clay [27] have been applied in adsorptive
  • ]. Moreover, highly porous carbon materials, especially with high nitrogen content, have been produced from various precursors including organic polymers [29][30][31][32][33] and MOFs [34][35][36][37][38]. Polyaniline (PANI), prepared from aniline, is a useful polymer in various fields because of its facile
  • synthesis, high conductivity and nitrogen content. Porous carbon materials, with high porosity and nitrogen content, have also been obtained from PANI. In other words, functional carbon, for catalysts and supercapacitors can be derived from high temperature carbonization of PANI, especially in the co
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • . In both cases, the hard-templated carbon was exposed to two substantially different temperatures, namely 800 and 3000 °C. This means that two porous carbon materials were treated at 800 and two at 3000 °C. In short, in the hard-templating process the pristine silica monoliths were infiltrated by a
  • nanometer-sized voids. For the pitch-based porous carbon the average pore size is ca. 7 nm, corresponding well to Ar physisorption analysis. Since SANS probes accessible and inaccessible voids, all mesopores are thus accessible. The pitch precursor exhibits a phase transformation during carbonization at
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • fibers [7][8][9][10], N-doped 3D ordered (meso)porous carbon materials [11], N-doped carbon composites (e.g., carbon nanotubes/graphene) [12], and N-doped carbon spheres [13][14] to graphitic-C3N4 carbon nitride composites [15]. In the present work we report results of a systematic study on the synthesis
  • decomposition of the carbon framework and a decrease of the N content [29][30]. The availability of active sites (for a certain electrochemical reaction) correlates with the electrochemically active surface area for this reaction. For most conventional porous carbon materials micropores contribute significantly
  • to the surface area, but their small pore size is considered to only allow a limited mass transport, which might result in a low accessibility of the active sites therein for electrochemical processes. Investigations of N-doped 3D ordered porous carbon materials showed, e.g., that a high content of
PDF
Album
Full Research Paper
Published 02 Jan 2020

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • materials that were applied in supercapacitor electrodes. In detail, a mechanochemical solvent-free one-pot synthesis is used and combined with a thermal treatment. Polyurethane is an ideal precursor already containing nitrogen in its backbone, yielding nitrogen-doped porous carbon materials with N content
  • EMIM-BF4 (70 F·g−1). Keywords: mechanochemistry; polyurethane; porous carbon; supercapacitor; waste; Introduction Currently more than 275 million tons of plastics end up as waste every year, 12.7 million tons of which accumulate in the oceans [1][2]. This waste is mainly packaging materials such as
  • essential to develop sustainable upcycling methods that reduce environmental pollution on the one hand and ensure a good material utilization on the other hand. One approach is the synthesis of porous carbon materials from PU waste. At the industrial scale, activated carbon materials are already obtained
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • Technology, Institute of Physical Chemistry, D-76131 Karlsruhe, Germany 10.3762/bjnano.10.113 Abstract Highly porous carbon–carbon composite electrodes for the implementation in redox flow battery systems have been synthesized by a novel soft-templating approach. A PAN-based carbon felt was embedded into a
  • solution containing a phenolic resin, a nitrogen source (pyrrole-2-carboxaldehyde) and a sulfur source (2-thiophenecarboxaldehyde), as well as a triblock copolymer (Pluronic® F-127) acting as the structure-directing agent. By this strategy, highly porous carbon phase co-doped with nitrogen and sulfur was
  • the porogen is removed, was performed to obtain highly porous carbon electrodes co-doped with nitrogen and sulfur. But not all of the formed carbon coating sticks to the surface of the felt fibers, some excess co-doped carbon material exists besides. This additional material is referred to as “bulk
PDF
Album
Full Research Paper
Published 28 May 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • nitrogen functionalities on the ORR, leaving aside the effect of porosity. In fact, although some studies suggest the importance of microporosity on the ORR [41], there is a lack of knowledge about its real effect on the ORR performance of nitrogen-doped porous carbon materials, and more specifically, of
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • density of 45.83 Wh kg−1 at a power density of 1.27 kW kg−1 was also realized. The developed electrode material provides new insight into ways to enhance the electrochemical properties of solid-state supercapacitors, based on the synergistic effect of porous carbon nanofibers, metal and metal oxide
  • nanoparticles, which together open up new opportunities for energy storage and conversion applications. Keywords: composite; electrochemical performance; porous carbon nanofiber; solid-state hybrid supercapacitor; supercapacitor; TiO2 nanoparticles; Introduction To meet the rapidly growing demand for energy
  • behavior. Herein, we report a novel approach for the fabrication of a Cu/CuO/porous carbon nanofiber (PCNF)/TiO2 (Cu/CuO/PCNF/TiO2) composite that is uniformly covered by TiO2 nanoparticles and is synthesized using the electrospinning method together with a hydrothermal technique, followed by air
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • lattice network for the composite that is supported by porous spherical reduced graphene oxide (RGO). Furthermore, the functional groups on RGO provide bonding sites for the active sulfur material. The 3D porous carbon structure enabled high sulfur loading and confined the sulfur within the 3D MWCNT
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • synthesis remains a challenge. In this work, the controllability of the synthesis route is enhanced by immobilizing the transition-metal graphitization catalyst on a porous carbon shell covering the carbide precursor prior to conversion of the carbide core to carbon. The catalyst loading was varied and the
  • studied. A partial conversion to obtain 30% shell and 70% core was set and confirmed by the mass loss recorded. Figure 2a shows a TEM image where clearly a porous carbon shell covering a carbide core is seen, which originates from the shrinking core like conversion mechanism in combination with the
  • mapping (Figure S2 in Supporting Information File 1). Influence of nickel loading on the microstructure of the final carbon material The porous-carbon-on-carbide-core material (CDC-shell) was impregnated with different amounts of nickel chloride hexahydrate (Figure 1, middle) and further chlorinated at
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • derivatives, such as active carbon, porous carbon, graphene, carbon nanotubes with good electrical conductivity and high specific surface area, are most commonly employed as electrode materials [5][6][7]. The other category are pseudocapacitors governed by reversible faradic redox reactions at the interface
PDF
Album
Full Research Paper
Published 25 Jan 2019

Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation

  • Zahraa Shahin,
  • Hyewon Ji,
  • Rodica Chiriac,
  • Nadine Essayem,
  • Franck Rataboul and
  • Aude Demessence

Beilstein J. Nanotechnol. 2019, 10, 228–237, doi:10.3762/bjnano.10.21

Graphical Abstract
  • hydroperoxide or by calcination at 300 °C and showed, in both cases, incomplete conversion of the alcohol (46%) under 5 bar of O2, at 30 °C and in the presence of a base [32]. Another heterogeneous catalyst, Au25(dodecanethiolate)18 deposited on porous carbon nanosheets, has been thermally treated at 500 °C for
  • supported on hierarchically porous carbon nanosheets [17] and Au25(SPhNH2)17 supported on SBA-15 [21], both calcined at 400 °C, showed 67% and 68% of selectivity for benzaldehyde, respectively. Thus, the 100% selectivity for benzaldehyde of Au25(SG)18 over ZrO2 when calcined at 400 °C may result from the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • ; micro/mesoporous; nanocomposite; water remediation; Introduction Porous carbon-based materials and carbon/inorganic hybrid materials have extensively been used for the adsorption of pollutants, such as heavy metals or aromatic hydrocarbons, from water in developing countries [1][2][3][4]. The removal
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • KOH aqueous solution. For electrochemical characterisation a porous carbon cloth was used as counter electrode. In order to assure measurement stability a pre-treatment consisting of five voltammetric cycles was applied at a scan rate of 0.1 mV·s−1 in a potential window between −1 V and 0.4 V. All
PDF
Album
Full Research Paper
Published 10 Dec 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • composites (Si/C), dealing with the incorporation of Si into a variety of different carbon materials, such as graphite, graphene sheets [46][47], porous carbon structures [37][38][48] or the coating of Si using different precursors as carbon sources [49][50][51]. One simple method to form amorphous carbon
  • -NPs. Shen et al. [37] also used a hydrothermal method to synthesize a pomegranate-inspired Si/C composite with Si-NPs distributed within a porous carbon structure and reported a capacity of 581 mAh g−1 after 100 cycles with a capacity retention of ≈77%. These previously mentioned publications clearly
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • [76]. Post-synthetic treatments are more effective to achieve surface functionalization, while the use of nitrogen-containing precursors along with a carbon source is more suitable to obtain a homogeneous incorporation of nitrogen in 3D graphene foam [77], multiwalled CNTs [78] or porous carbon [79
PDF
Album
Review
Published 18 Jul 2018
Other Beilstein-Institut Open Science Activities